Assignment: A15 (help)
Air-Table: Final features

The following two images highlight the changes that need to be made to the “Spring” class to support
the pinned-spring feature.

class Spring:
def init_ (self, pl, p2, length m=3.0, strength Npm=0.5, spring color=THECOLORS["w

w"], width m=0.025, drag_c=0.0):

Optionally this spring can have one end pinned to a vector point. Do this by passing in p2 as a vector.
if (p2. class . name = 'VeciD'):

Creat a point puck at the pinning location.

% The location of this point puck will never change because

it i=s not in the pucks list that is processed by the

phy=zics engine.

p2 = Puck(p2, 1.0, 1.0)

p2.vel 2d mps = Vec2D(0.0,0.0)

length m = 0.0

self.pl = pl

self.p?2 = p2

2elf.plp2 separation 2d m = Vec2D(0,0)
2elf.plp2 separation m = 0O

self.plp2 normalized 2d = Vec2D(0,0)

gelf.length m = length m
self.=trength Npm = strength Npm
zelf.damper Ns2pm2 = 0.5 #5.0 #0.05 #0.15
self.unstretched width m = width m #0.05

self.drag c = drag c

self.spring vertices_2d m = []
self.spring vertices 2d px = []

self.zpring color = spring color
self.draw_as_line = False

def calc_spring_forces on_pucks (self):
self.plp2 separation 2d m = self.pl.pos 2d m — self.p2.pos 2d m

self.plp2 separation m = self.plp2 separation_2d m.length()

The pinned case needs to be able to handle the zeroc length spring. The

separation distance will be zero when the pinned spring is at rest.

This will cause a divide by zero error if not handled here.

if ((=self.plp2 separation m = 0.0) and (self.length m = 0.0)):
spring force on 1 2d N = Vec2D(0.0,0.0)

else:
2elf.plp2 normalized 2d = zelf.plp2 separation 2d m i gelf.plp2 separation m

Spring force: acts along the separation vector and is proportional to the separation distance.
spring force on 1 2d N = =elf.plp2 normalized 2d * (self.length m - self.plp2 separation m) * self.strength Npm

Damper force: acts along the separation vector and is proportional to the relative speed.
v_relative 2d mps = self.pl.vel 2d mps - self.p2.vel 2d mps

v_relative alongNormal 2d mps = v_relative 2d mps.projection onto(self.plp2 separation 2d m)
damper force on 1 N = v_relative alongNormal 3d mps * self.damper Ns2pm2

Net force by both spring and damper
SprDamp force 3d N = spring force on 1 2d N - damper force on 1 N

This force acts in opposite directions for each of the two pucks. Notice the "+=" here, this
iz an aggregate across all the springs. This aggregate MUST be reset (zeroed) after the movements are
calculated. So by the time you'we looped through all the springs, you get the NET force, one each ball,

applied of all individual springs.
self.pl.Sprhamp force 2d N += SprDamp force 2d N * (+1)
self.p2.5prhamp force 2d N += SprDamp force 2d N * (-1)

Add in some drag forces if a non-zero drag coef is specified. These are based on the
% welocity of the pucks (not relative speed as is the case above for damper forces).
self.pl.S5prhamp force 2d W += self.pl.vel 2d mps % (-1) * self.drag c
self.p2.5prhamp force 2d N += self.p2.vel_2d mps * (-1) * self.drag c

