Assignment: All
Air-Table: Rotating Tubes
This exercise introduces:

e Vectoroperationsuch as addition and rotation.
o Drawingof polygonsthrough use of a vertices list.

Python language topics:

e Operatoroverloading.

Problem statement:
(Again, start with a new Pythonfile.)

Add algorithmiccontentto the baseline air-tablefile (A10_2D_baseline_server.py) to display and rotate a 2D tube (a
longrectangle). Display this ONLY onthe #7 demo. Rotate the tube around the center of one of its ends (its base-point).
Use the “a” and “d” keysto rotate clockwise and counter clockwise. Use the Vec2D class to facilitate the vector
rotations. Create atleasttwo instances of the tubes. Locate theirbase-points at the following (x,y) locations: (1.0,1.0),
(2.0,2.0), (3.0,3.0), etc. Each tube should rotate around its own base-point position.

Algorithmicdescription: 4

Create a RotatingTube class. Attributes of this class should
include a4-pointvertices list that will representthe tube

(yellow rectangle in drawingto the right). Each vertex will be (-1,2) (1,2)
represented by a 2D vector. The basicalgorithmicflow of the
class methodsisinthe comments of the code images below.

Python code:

The following code (images) is notacomplete solutionto the
problem. It shows additional content relative to the baseline
air-table file(A10_2D_baseline_server.py available onthe

classesshare). There is some obfuscation this time, and you (_z,f)) (0,0) (?,0)

have to figure out where these pieces of code should go. The

indentlevels should be aclue to you. These are not necessarily in order, so of course the neighboringimages are not
necessarily acontinuation fromthe image above.

You will also have to call some of these class methods from the “main” function. And of course you will have to
instantiate the tubes somewhere. Both of these steps are notin the images below.

v

class RotatingTube:
def init (self, tube base 2d m):

gelf.color = THECOLORS["vellow™]

Degrees of rotation per rendering cycle.

self.rotation deg = 1.8

Scaling factors to manage the aspect ratio of the tube.
self.sf x = 0.15

self.sf y = 0.50

self.tube base 2d m = tube base 2d m

Notice the counter—clockwise drawing pattern. Four vertices for a rectangle.

Each vertex is represented by a vector.

self.tube vertices 2d m = [Vec2D(-0.30 * self.sf x, 0.00 * (RE@® N .
Vec2D(0.50 * self.sf x, 0.00 * (GE0E. o o
Vec2D(0.50 * self.sf =, 1.00 * (G&E0E. 5 o
Vec2D(-0.50 * self.sf x, 1.00 * (EEEE 5N 1

Define a normal (1 meter) pointing wvector to keep track of the direction of the jet.
self.direction 2d m = Vec2D(0.0, 1.0)

ro:a:e_ver:ices(self, vertices_Qd_m, angle degqg) :
¥ Put modified wectors in a new list.

rotated vertices 2d m = []

for vertex 2d m in vertices_Zd_m:

rotated_vertices_Qd_m.append(B e | 18 "EEERL B A)]

return rotated_vertices_Zd_m

rotate everything(self, angle deg):
Rotate the pointer.
self.direction 2d m = self.direction 2d m.rotated(angle deq)

Rotate the tube.
self.tube vertices 2d m = |BE = - = L | L] o Bl = 1 B " W |

client rotation control(self, client name) :

Rotate clockwise (D) and counter-clockwise (Z) .

if (env.clients[client name].key a =— "D"):
| N | HOE EE e ReE = =-nm | | | | | | L | -I
_| -m = | = B N] | B o mem. | - n

self.rotate everything(-1 * self.rotation deq)

convert from world to_ screen(self, vertices_Zd_m, base_point_Zd_m]:

vertices 2d px = []

for | e B N m]

Calculate absolute position of this vertice.

vertices_zd_:px_rlll] u = EE [B = [R R N] - w - g u Illﬁ

return vertices_Zd_px

draw(=zelf) :
Draw the tube on the game—window surface.

pygames . draw.[I onil P Fels wE§" LN

3)

