Assignment: A7

Air-Track: Hollow Cars and Demos

New physics calculation concepts:

Variationin mass between carsis represented by hollowing out the lighter cars. Keeping the width of each
car identical resultsininteresting collision patterns.

Python language topics:

Nothing much new here.

Problem statement:

(Again, startfroma copy of your previous assignmentfile.)

Alterthe Detroit(car) class to support hollow cars. Instead of specifying a pixel width, input the car mass.
Specify hollowrenderingwith aT/F car attribute named “hollow.”

Use the inflate method of Pygame’s rectangle object to draw the smallerrectangle that will represent the
hole. Keep the width of the hole constant and adjust the hole areaonly through its height.

Show off your stuff by making a set of demos (The following serves mainly as an explanation of the 10 new

demosinthisassignment’s code. Skip someor all of these and make your own if that’s more fun for you. Try
to make at least 10 distinct demos.):

o

Demo #1 (#1 on the keyboard; above the “Q”): Closely-spaced set of cars falling under gravity with
slightly inelastic collisions. Have all the cars the same colorexceptforone. When these “settle” at
one end of the track illustrate the collisions by turning the color-transfer control on and off.

Demo #2 and #3: Collisions between a pair of closely-spaced cars fallingwherethe lighteroneis
higheron the track; slightly inelastic. The more the difference in mass, the strongerthe lighter car
rebounds when the pairhitsthe end of the track. Have one case where the masses are slightly
differentin mass (8to 6) and one case where the cars are strongly differentin mass (8to 1).

Demo #4: Completelyinelasticcollision between aset of converging (all headed toward the center
of the track) cars where the total system momentumis zero. The cars should all stick togetherin the
middle of the track and the glob of cars should have zero speed (to prove the systemiinitially had
zeromomentum).

Demo #5: Closely-spaced set of stationary cars. One moving car with a different color. Elastic
collisions.

Demo #6: Same as #5 but with some gravity.

Demo #7: Same as #5 but with a linearvariationin the mass of each car inthe set.

Demo #8: Elasticcollisions between two cars. The heaviercaris initially stationary and 3times the
mass of the lightercar. Colortransferis setto be off. The resulting pattern shows acomplete
transferof energyintoand out of the heaviercar. Anotherinteresting feature is that when both cars
are inmotion, they have the same speed.

Demo #9: Thisis like #5 but a bit more dramatic and illustrates momentum moving through the
stationary setintwo directions. Make two stationary sets (12 cars in each set) of closely-spaced
cars, all the same color, with a significant gap between the two sets. Gravity is off; totally elastic
collisions. Then have two cars, each a different color, moving toward the sets from the ends of the
track, and two cars moving fromthe central gap out toward the ends of the track. Have color
transferon.

o Demo#0: Similarto#5, butwith closerspacinginthe setand three movingcars. Elasticcollisions.
Initially no colortransfer. Thisis kind of like a Newton’s cradle with three moving balls.

o Demo#1 (kp) (#1 on the keypad; underneath #4): Thisis the formerdemo #1 from the previous
assignment. Thisillustrates carrendering without the “hollow” technique. Two stationary cars.
Demo #2 (kp): Two non-hollow cars with contrasting masses.

Demo #3 (kp): Two non-hollow cars with even more contrasting masses.
More demos: It’s yourturn. Come up with something new for each of the remaining number keys on
the keypad.

Algorithmicdescription:

e Implementanew attribute “hollow” forthe Detroit (car) class to support shifting gears from hollow to non-
hollow cars. Do one or the otherin each demo, not both types.

e Aseachcarisadded, keeptrack of the mass value of the heaviest car. Make this an attribute of the air_track
object.

e Thenupdate, if needed, the characteristics of the hole on each car relative to the most massive car. The
most massive cars(s) will be solid (no hole).

e Duringthe game loop draw both a regularrectangle and then a smallerrectangle (ontop) torepresentthe
hole. The hole’s colorshould be the same as the background color (probably black).

o Use theinflate method (with negative dimensions) of the rectangle object to make a smaller copy of
the mainrectangle.

Python code: (seeimageson nextfew pages)

The following code is nota complete solution to the problem. It shows changes (additional content) relative to
assignment #6. There is no obfuscation, butyou have to figure out where these pieces of code should go. The indent
levelsshould be aclue to you. These are in order, but of course the neighboringimages are not necessarily a
continuation fromthe image above. There may be small pieces of code missing;it’s up toyouto fill in those blanks.

def make some cars(self, nmode):
Update the caption at the top of the pygame window frame.

game window.update caption("Rir Track | carz): Demo " + =str{nmode))

Scrub off the old cars and reset some stuff.
air_ track.clean()

if mmode = "1p’
gui_ form['gravity factor'].walue = 0.0
gui_ form['colorTransfer'].value = False

self.cars.append({ Detroit (color=THECCLORS["ve " 1, left px = 240, width px=20, hollow=False, v _mps= 0.0))
self.cars.append(Detroit {color=THECOLORS["orangs="], left px = 340, width px=30, hollow=False, v_mps= -0.0))

elif nmode — 'Zp
guli form['gravi factor'].value = 2.0
gui_ form['colorTransfer'].value = False

self.cars.append(Detroit ({color=THECOLORS["ve=1]
gelf.cars.append(Detroit(color=THECOLORS["orang="], left_px = 440, width px=60, hollow=False, v_mps= -0.2}}

1, left_px = 240, width px=20, hollow=False, v_mps= -0.1}}

elif nmode — '3Zp':
gui_ form['gravity factor'].walue = -1.0
gui form['colorTransfer'].value = True

self.cars.append(Detroit (color=THECOLORS["yellow"], left px = 240, width px=20, hollow=False, v mps= -0.1)})
self.cars.append(Detroit {color=THECOLORS["orangs="], left px = 440, width px=80, hollow=False, v_mps= -0.2))

elif nmode =— 0O:

gui_form['gravity fac

gui_ form['colorTransfer'].value = False

or'].value = 0

gelf.coef rest_car = 1.00
self.coef rest wall = 1.00
x steps = Next x(100, 23)
cars v mps = 0.0 #.15 #n/s
carz m kg = 0.3 #kg
cnln; Iist = ["yellow"™ , "red"”,"green”, "blue™ ,"pink"]
k color = 0O
for j in range(9):
if (k color > (len(color list) - 1)):
k color = 0
else:
k color += 0
zelf.cars.append(Detroit(color=THECOLORS [color_ list[k_color]], left px=x_steps.step(),
V_mps=cars_v_mps, m kg=cars_m kg))

cars v mps = -0.3 #.15 #m/s
x steps = Next x(750, 45)
k color = 0O
for j in range(3):
if (k color > (len(color list) - 1)):
k color = 2

else:
k color += 1
self.cars.append(Detroit (color=THECOLORS[color list[k color]], left px=x steps.step(),

V_mpsS=cars v _mps, I kg=cars m kKg))

=2

True
gelf.coef_rest_car = 0.983
self.coef rest_wall = 0.85
color list = ["yellow","red","green","blue™,"pink"]

x steps = Next x(050, 30)
cars v mps = 0.0 $#.15 ¥m/s
cars m kg = 0.2 #kg
k color = 0
for j in range(4):
if (k color > (len(color list) - 1})):
k color = O
self.cars.append(Detroit (color=THECOLORS[color list[k color]], left px=x steps.step(),
V_NpsS=cars v _mps, M kg=cars m kg))
k color += 0
k color += 1
self.cars.append(Detroit (color=THECOLORS[color list[k color]], left px=x steps.stepl(),
V_mps=cars_v_mps, m kg=cars m kg))

elif nmode =— 2:

gui form['
gui form['c

ctor'].value = 3
fer'].value = False

x_steps = Next_x(450, 30)
cars v mps = 0.0 #.15 #m/=
cars_ m kg = 0.3 #kg

self.cars.append(Detroit {color=THECOLORS[" te"], left px=x steps.step(), v_mps=cars_v_mps, m kg=cars_m kg*g))

self.cars.append({ Detroit (color=THECOLORS ["w! ="], left_px=x steps.step(), V_mps=cars_v_mps, m kg=cars_m kg¥i))
elif nmode — 3:

gui_ form[': =3

gui form[' = False

x steps = Next x(450, 30)

cars v mps = 0.0 #.15 #m/s

cars m kg = 0.3 #kg

self.cars.append(Detroit (color=THECOLORS["white"], left px=x steps.step(), Vv _mps=cars v mps, m kg=cars m kg¥*l))

self.cars.append(Detroit (color=THECCLORS ["w te"], left px=x steps.step(), Vv _mps=cars v mps, m kg=cars m kg*g))

elif nmode — 4:
fer'].value = False

self.coef rest _car = 0.0

self.coef rest wall = 1.0

gui form['gravity factor'].value = 0

cars v _mps =
cars_m kg =

self.cars.append(Detroit (color=THECOLORS ["whi
self.caras.append(Detroit (color=THECOLORS ["wl
self.cars.append(Detroit (color=THECOLORS [
self.cars.append(Detroit (color=THECCLORS['
self.cars.append(Detroit {(color=THECOLORS[™

left px= 30, v_mps=+7.0%cars v mps, m kg=2*cars m kqg))
left px=300, v _mps=+2.0%cars v mps, m kg=1l*cars m kqg))
left px=600, v_mps=-2.0%cars v mps, m kg=2*%cars m kqg))
left px=700, v_mps=-1.0%cars v mps, m kg=1l*cars m kg))
left px=200, v _mps=-5.5%cars v mps, m kg=2*%cars m kqg))

elif nmode =— 5:
self.coef rest car
self.coef rest wall =

gui form[':

X _steps = Next x (450, 35)
cars v mps = 0.0 #.15 #m/s
cars m kg = 0.3 #kg

for j in range(10):
self.cars.append({ Detroit (color=THECOLORS["vel

7"] r
left px=x steps.step(),
V_NpS=Cars v_mps,
m_kg=cars_m kg))
self.cars.append(Detroit (color=THECOLORS["r=d"], left px==x steps.step(), v_mps=0.5, m kg=cars m kg))

elif nmode — &:
self.coef rest car
self.coef rest wall =

L]

gui form['gravity factor'].value = -1
gui form['colorTransfer'].value = True

X _steps = Next x (450, 35)
cars_ v mps = 0.1
cars m kg = 0.3 #kg

for j in range(10):
self.cars.append{ Detroit (color=THECOLORS["vellow"],
left px=x steps.step(),
V_MpS=Cars v_mps,
m_kg=cars m kg))
self.cars.append(Detroit (color=THECOLORS["red"], left px=x steps.step(), v _mps=0.5, m kg=cars m kg))

elif nmode = 7:
self.coef rest car = 1 #0.99
self.coef rest wall = 1 #0.99

factor'].value = 0

gui form['colorTransfer'].value = True

X steps = Next x(450, 35)
cars v mps = 0.0 #.15 #m/s
cars m kg = 0.3 #kg

for j in range (10} :
cars_m kg += .1
self.cars.append{ Detroit {color=THECOLORS["yellow"],
left px=X steps.step(),
V_NpS=CAars_v_nps,
m kg=cars m kg))

cars m kg +=

self.cars.append(Detrolit (color=THECOLORS["red"], left px=x steps.step(), v _mps=0.5, m kg=cars m kg))

elif mmode =— 8
gui form['colorTransfer'].value = False
self.coef rest car = 1.000
self.coef rest wall = 1.000
gui form['gravity factor'].value = 0

cars v mps = 0.0 #.15 #m/s
cars m kg = 0.3 #kg

This does interesting COMPLETE energy transfers between the cars when the first car is
3,4,5,6... times the mass of the other car, and the lighter car is initially stationary.
If the heavy car is initially stationary, then only 3x works.

self.cars.append{ Detroit {color=THECOLORS[":

ow"], left px=200, v _mps=0, m kg=3*cars m kqg))

gelf.cars.append{ Detroit (color=THECOLORS[" i"] , left _px=:500, v_mps=1, m kg=l*cars m kqg))
elif nmode = 9:

#self.gai_mena = True #False

gui_ form[' £

gui form['

self.coef rest car = 1.00

self.coef rest wall = 1.00

cars v mps = 0.0 #.15 #m/s
cars m kg = 0.3 #kg
color list = ["yellow","red","green”,"blue”,"pink","grey"]

self.cars.append(Detroit (color=THECCOLORS[color 1ist[1]], left px= 20, v _mps= 0.05, m kg=cars m kg))
x steps = Next x(50, 28)
for j in range(lZ2):
self.cars.append(Detroit (color=THECOLORS[color 1li=st[0]], left px=x steps.step(), v_mps=cars v _mps, m kg=cars m kg))
self.cars.append(Detroit (color=THECOLORS [color 1list[2]], left px= 430, v mps=-0.05, m kg=cars m kg))

self.cars.append(Detroit (color=THECOLORS[color 1i=t[3]], left px= 460, v _mps= 0.20, m kg=cars m kg))
X steps = Nexrt x(500, 29)
for j in range(l12):
self.cars.append(Detroit (color=THECOLORS[color 1ist[0]], left px=x steps.step(), v_mps=cars v mps, m kg=cars m kg))
self.cars.append(Detroit(color=THECOLORS[color 1ist[5]], lefr px=:890, v _mps=-0.05, m kg=cars m kg))

Si=iE key"
class Next x:
Initialize the position= of the cars.
def init (self, x start, x_increment):

self.x = X _start

self.dx = x increment
def step(self):

gelf.x += self.dx

return =self.x

