Assignment: A4
Air-Track: Car-Car Collisions
New physics calculation concepts:

e (Car-Car Collisions:
o Detection of car-car collisions.
o Penetration (overlap) correction.
o Velocity changes caused by car collisions.

The following links give good background theory for the car-car collision physics. However, all that we needin this
assignmentis giveninthe twoformulas below.

http://en.wikipedia.org/wiki/Elastic collision#One-dimensional Newtonian

http://en.wikipedia.org/wiki/Inelastic collision

(Note:the formulas below are from the inelastic collision link above)

The formula for the velocities after a one-dimensional collision are:

o Cﬁmb(ub - Ua) + Mg Uy + Myl

Uﬂ —
nmy + my
. Crmg(tq — Up) + Moty + Myl
, =
my ‘I‘ my
where

V_ is the final velocity of the first object after impact

vy is the final velocity of the second object after impact

u_ is the initial velocity of the first object before impact

u is the initial velocity of the second object before impact
m_ is the mass of the first object

m, is the mass of the second object

CH is the coefficient of restitution; if it is 1 we have an elastic collision; if it is 0 we have a perfectly inelastic collision,

Notice thatin the special case when CR=1and m_a=m_b, thenthe equationsabove reducetov_a=u_bandv_b=u_ga;
that is, the two cars simply exchange velocities afterthe collision.

Python language topics:

e Enumeratedforloops.
o Listslices.

Note: Here again are the references links:
http://docs.python.org/2/tutorial/index.html
http://learnpythonthehardway.org/book/
http://www.pygame.org/docs/index.html

http://en.wikipedia.org/wiki/Elastic_collision#One-dimensional_Newtonian
http://en.wikipedia.org/wiki/Inelastic_collision
http://docs.python.org/2/tutorial/index.html
http://learnpythonthehardway.org/book/
http://www.pygame.org/docs/index.html

http://programarcadegames.com/ http://inventwithpython.com/appendixa.html

Problem statement:
(Again, start with a new Pythonfile.)

Add algorithmiccontenttothe previous exercise to simulate car-car collisions. Have atleast three demo keys 1, 2, and
3... At least one of these should have gravity turned on. Add an attribute to the AirTrack class that keepsa runningtotal
of all the collisions.

Demonstrate thatyour penetration-correction code works by running demos with and without the corrections. First,
convertthe two variables (fix_wall_stickiness, fix_car_stickiness) that control thisto AirTrack class attributes so thatyou
can access them outside of the AirTrack class. Remember, you have given the air_track object global scope. Togglethese
twovariables (between True and False) through use of the “s” key.

Make a similartoggle forthe color_transferattribute. Toggle this with the “c” key.

Printthe collision countand the two attributes outevery frame in the while loop.

Algorithmicdescription:
Collisions: Thisisan upgrade to the existing collision related code inthe air_track class.

e Loop overeachcar inthe carlist (use enumerationinthisfor-loop). Call this carin the list “car”:
o Checkfor car-wall collisions with the left wall by comparing the position of the left edge of the car
with the position of the left wall (left edge of the Pygame window). Similarly, check the right wall.
= Correct forwall penetration (overlap): move the carto the position it wouldbe if had
bounced at the surface and not penetrated. That s, back the car out a distance twice the
amount of the penetration.
= Ifthereis acar-wall collision, reverse the value of the velocity:
e v _mps=-1*v_mps*CR
o Haveanotherfor-loop overthe remainingcarsinthe car list (use a Pythonslice). Call this car “ocar”
inthe for-loop (forothercar). This sub loop will allow us to identify unique car-car pairs without
repeating any. It will also avoid needlessly checking a car for collisions with itself (impossible).
= Checkfor car-car collisions by comparing the position of the car and the ocar (other car): If
the separation between the carsisless thanthe sum of the two half-widths, they have
collided and are overlapping (penetrated).
e Correct forcar penetration: again, as with the wall collisions, back the position up to
where the cars would be if there was no penetration. Since each cartravelsat a
differentvelocity before and afterthe collision, you must do thisintwo steps.

o Firstcalculate the penetration time. Thisis the time needed forthe two cars
to reach the position they are at now (at collision detection) from the point
where they would be justtouching. Thisis the penetration distance divided
by the relative velocity between the two cars.
t_pen=x_pen/ abs(car.v_mps — ocar.v_mps)

o Next, back up the cars one penetration-timeamount of travel atthe
incomingvelocities (theirvelocities BEFORE the collision).

http://programarcadegames.com/
http://inventwithpython.com/appendixa.html

o Next, move the cars one penetration-timeamount of travel at the outgoing
velocities (theirvelocities AFTER the collision). Use the equations above to
calculate the velocities after the collision. But, use a CR=1 here to best avoid
stickiness problems.

e Assignthe corresponding post-collision velocities to the cars.

o Again, use the equations above to calculate the post-collision velocities, but

here use the actual CR value.

Python code: (seeimageson nextfew pages)

The following code (image) is notacomplete solution to the problem. It mainly shows changes relative to assignment
#3. The task inthe problem statementthatrelatestothe fix_wall_stickiness and fix_car_stickiness variablesis not
showninthe version of the code capturedin the images below.

def check for collisions(self):

Collisionz with walls.
Enumerate so can efficiently check car-car collisions belaow.

fix_wall_stickiness = True ¥ False True
fix car stickiness = True # False True

for i, car in enumerate (self.cars):

Colliszions with Left and Right wall.
If left-edge of the car is less than... OR If right-edge of car is greater than...
if ((car.center m - car.width_ij.D) < game window.left m) or ((car.center m + car.width_mj2.0) > game window.right m):

if fix wall stickiness:
self.correct wWall penetrations(car)

car.v mps = -car.v_mps * self.coef rest wall

This makes use of the "enumerate™d for loop above.

In doing S0, it avoids checking the self-self case and avoids checking pairs twice
like (2 with 3) and (3 with 2).

$# Example checks: (1 with 2,3,4,5), (2 with 3,4,5), (3 witch 4,5), (4 with 5) etc...

Check for overlap with other rectangle.

if (abs(car.center m - OCAr.cCenter m) < | n 1 S | = = mn bt lendlia & |:
if sgelf.color transfer — True:
{car.color, ocar.color) = {ocar.color, car.color)

Prevent sticking to other cars.
if fix car stickiness:
3e1f.| [n kcar, acar)

Calculate the new post-collision velocities.

{car. EI, ocar. EI) = Elcar_and_o car wvel AFTER collision {l:l:-

