Assignment: A3
Air-Track: Gravity and Wall Collisions
New physics calculation concepts:

e Wallcollisions:
o Detection of wall collisions.
o Velocity changes caused by wall collisions.
e Gravity:
o Forces(like gravity) cause arate of change inthe velocity (acceleration). The average velocity overthe
time stepisthen usedto calculate the change in position.

The algorithm outlined below for calculating position as affected by forces and accelerationis based on
Euler'smethod:
http://en.wikipedia.org/wiki/Euler method

Euler's methodisthe simplest of the Runge-Kutta methods:
http://en.wikipedia.org/wiki/Runge %E2%80%93Kutta method

o Mass. Thisis a calculated property based onthe density and dimensions of the car. Mass is needed to
calculate the force of gravity on an object.

Python language topics:

o Iftests
e Forloops
e Lists

Note: Here again are the references links:

http://docs.python.org/2/tutorial/index.html
http://learnpythonthehardway.org/book/
http://www.pygame.org/docs/index.html

http://programarcadegames.com/ http://inventwithpython.com/appendixa.html

Problem statement:
(Again, start with a new Pythonfile!)

Add algorithmiccontentto the previous exercise to simulate wall collisions and the force of gravity. Again, have a
feature to demonstrate your code. Have at least three demokeys 1, 2, and 3... Atleast one of these should have gravity
turnedon.

http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://docs.python.org/2/tutorial/index.html
http://learnpythonthehardway.org/book/
http://www.pygame.org/docs/index.html
http://programarcadegames.com/
http://inventwithpython.com/appendixa.html

Algorithmicdescription:
Gravity: (thisshould be addedtothe update_SpeedandPosition method of the air_track)

e Characterize gravity asthe componentalongthe tilted track. (Note: alevel track has no component of
gravity alongthe track.) Thiscomponent will be some small fraction of normal gravity because tilted air

tracks usually have arelatively small tilt angle. Something like one 20" of normal g is a realisticcomponent
value.
o g_mps2=9.8/20.0

e Havethisgravity value be an attribute of the air_track object.

e Use Newton’slaw (a=F/m)to calculate the acceleration and associated change in velocity during the time
step. Then calculate the change in position based on the average velocity during the time step:

total force_on _car N=m_kg* g mps2 + 0.0 + 0.0 + 0.0

a_mps2 = total_force_on_car N/ m_kg

v_end_mps=v_mps + (a_mps2 * dt)

v_avg_mps=(v_mps+v_end_mps)/2

X_m=x_m+ (v_avg_mps*dt)

O O O O O O

v_mps=v_end_mps

Collisions: (thisshould be anew method of the air_track. Call this method from the main game loop so that it gets
executedineachframe).

e Loopovereachcar inthe car list.
o Checkfor car-wall collisions with the left wall by comparing the position of the left edge of the car
with the position of the left wall (left edge of the Pygame window). Similarly, check the right wall.
= Correct forwall penetration (overlap): move the carto the positionit would be if had
bounced at the surface and not penetrated. Thatis, back the car out a distance twice the
amount of the penetration.
= Ifthereis acar-wall collision, reverse the value of the velocity:
e v mps=-1*v_mps*CR

Figure 1. Car-wall collision. The numbers mark
the sequence. The blue rectanglesillustrate the

|

car approachingthe wall; green rectangles :

. . I
illustrate the carrebounding off the wall. The 1 2 13

. [

blue and greenrectangles are shown vertically [

[

separatedforclarity. The dotted-line blue | I
rectangle #3 shows the detected collision (an

overlap with the wall); this rectangleis not
drawnin the game loop. Rectangle #4 shows 6 5 4
the corrected position of the car; this rectangle

isdrawn. The corrected positionis where the
car would be ifithad bounced at the surface

Y
>
A

instead of penetrating the wall. 4

Python code: (seeimageson nextfew pages)
The following code (image) is notacomplete solution to the problem. It mainly shows changes relative to assignment
#2.

class AirTrack:
def init_(self):

Initialize the list of cars.
self.cars = []

self.carCount = 0

Coefficients of restitution.

self.coef rest_base = 0.30 # Useful for reseting things.
self.coef rest car = zelf.coef rest base
self.coef rest wall = self.coef rest base

Component of gravity along the length of the track.
self.gbase mps2 = 9.8/20.0 # one 20th of g.

self.g mps2 = self.gbase_mps2

self.color transfer = False

def update SpeedandPosition{self, car, dt_s):

2dd up all the forces on the car.
car forces N = (car.m kg * zelf.g mp=2) + 0.0 + 0.0

Calculate the acceleration based on the forces and Newton's law.
car_acc mpsl = ‘ n n m =y

Calculate the welocity at the end of this time step.
v_end mps = | g - [-

Calculate the average velocity during this timestep.
v_avg_mps=+ qlllll 1- |

$# Use the average velocity to calculate the new position of the car.
Physics note: v_avg*t is equivalent to (vV*t + (1/2) =acc*t"2)

car.center m = | u u | | an

Assign the final velocity to the car.

def check for collisions(self):
Collisions with walls.

$# Enumerate 2o can efficiently check car-car collisions below.

fix wall stickiness = True # False Trus
for car in self.cars:

Collisions with Left and Right wall.
£ If left-edge of the car is less than... OR If right-edge of car is greater than...

if {(car.center m - car.width_mfz.m < game window.left m) or L] mEEE ECH pE N EEES GEE RSN W P W G W

if fix wall stickiness:
self.correct wall penetrations(car)

car.v_mps = = s = m = = |

] def correct wall penetrations(self, car):

penitration left x m = game window.left m - E - car.halfwidth m)

] if penitration left x m > 0:

car.center m += 2 * |- = mm men] u -|
penitration right x m = (car.center m + car.halfwidth m) - (" L]
| if (e u | |> 0:

car.center m -= 2 % penitration right x m

class Detroit:
def 1

__{=elf, color=THECOLORS["
self.color = color

self.height px = height_px
self.tcop px

game window.height px - self.height px
self.width _px = width_px

self.width m = env.m from px(width px)
self.nalfwidth m = self.width_mfz .0

self.neight m = env.m from px(width px)

Initialize the position and wvelocity of the car. These are affected by the

physics calcs in the Track.
self.center m = env.m from px(left_px) + self.halfwidth m
self.v mps = Vv _mps

self.density kgpm? = €00.0
self.m kg = self.height m * self.width m * |mel =ee u cm—

Increment the car count.
air track.carCount 4= 1
Name this car based on this air track attribute.

self.name = air track.carCount

Create a rectangle object based on these dimensions
Left: distance from the left edge of the screen in px.
Top: distance from the top edge of the screen in px.

self.rect = pygame.Rect(left px, self.top px, self.width px, self.height px)

A couple updatestothe make_some_cars method.

] def make_some_cars(self, nmode):
$# Update the caption at the top of the pygame window frame.
game window.update caption("Rir Track (basic): Demo #" + str(nmod

1 if (nmode =— 1):
air track.g mps2 = 0
air track.carCount = 0O
self.cars.append(Detroit (color=THECOLORS["red"], left px =
self.cars.append(Detrolit (color=THECOLORS["blu="], left px =

] elif (nmode = 2):
air track.g mps2 = air track.gbase mps3
air_ track.carCount = 0O
self.cars.append(Detroit (color=THECOLORS["yel]

1, left _px

self.cars.append(Detroit (color=THECOLORS["green"], left px =
1 elif (nmode =— 3):
air_ track.carCount = 0O

air track.g mps2 = 0
self.cars.append(Detroit (color=THECOLORS["vel] 1, left _px
self.cars.append(Detroit (color=THECOLORS["green™], left px

An update to a portion of the main() function.

e})

240, width px=26, v_mps=

2"], left px=10, width px=26&, height px=098, v_mps=1):

340, width px=26, v _mps= -0

= 240,
440,

= 240,
= 440,

width px=26,
width px=50,

width px=26,
width px=:0,

Update welocity and x position of each car based on the dt_s for this frame.

for car in air track.cars:
air track.update SpeedandPosition(car, dt_s)

Check for collisions and apply collision physics to determine resulting

velocities.
air track.check for collisions()

V_mps=
V_mps=

¥_mps=
V_mps=

0.2))

-2))

-0

-0
-0

-1))
-2))

-1))
-2))

